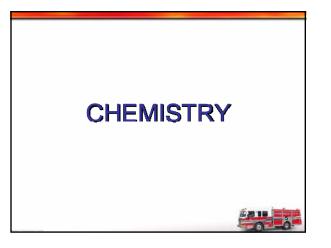
Carbon Monoxide Poisoning

Bryan E. Bledsoe, DO, FACEP The George Washington University Medical Center

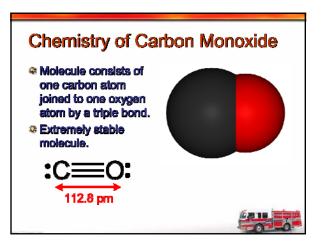
Endorsements

This educational module has been endorsed by the following professional organizations:



Review Board

Carbon monoxide is the most frequent cause of poisonings in industrialized countries.



Chemistry of Carbon Monoxide

🍣 Gas:

- 🍣 Coloriess
- Odorless
- Tasteless
- Nonirritating
- Results from the incomplete combustion of carbon-containing fuels.
- Abbreviated "CO"

Sources of Carbon Dioxide

Endogenous

- Exogenous
- Methylene chloride

Sources of Carbon Monoxide		
Enclogenous: Normal heme catabolism (breakdown): Conly biochemical reaction in the body known to produce CO.	$ \begin{array}{c} & \begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$	
& Levels Increased In & Hemolytic anemia. & Sepsis		

Sources of Carbon Monoxide

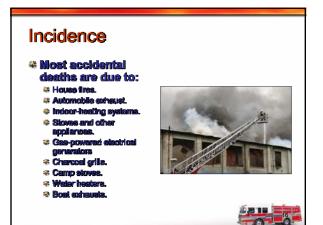
Exogenous:

- 🐳 House fires.
- 🏶 Gas -powered electrical generators.
- Automobile exhaust.
- Propana-powered vehicles.
- 😔 Heaters.
- 🕸 Camp stoves.
- 🕸 Boat exhaust.
- 🌣 Cigaretia smoke.

Incidence

CO is leading cause of poisoning deaths.

- CO may be responsible for half of all poisonings worldwide.
- ~5,000–6,000 people die annually in the United States as a result of CO poisoning.
- ~40,000–50,000 emergency department visits annually result from CO poisoning.



Incidence

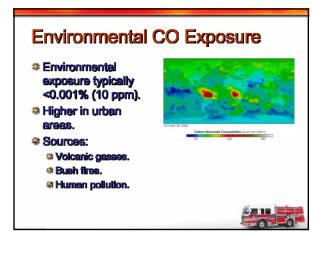
- Accidental CO poisoning deaths declining: Improved motor
 - vahicle emission policies.
 - Use of catalytic converters.

Incidence

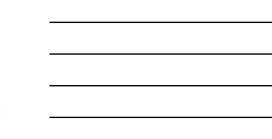
- Increased accidental CO deaths:
 - Patient > 65 years of age.
 - @ Male
- Ethanol Intoxication.
 Accidental deaths
 - peak in winter:
 - Use of heating systems.
 - Closed windows.

Incidence

- Significant increase in CO poisoning seen following disasters.
- Primarily relates to loss of utilities and reliance on gasolinepowered generators and use of fuelpowered heaters.



- Fetal hemoglobin has a much greater affinity for CO than adult hemoglobin.
- Pregnant mothers may exhibit mild to moderate symptoms, yet the fetus may have devastating outcomes.

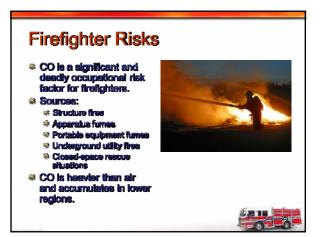


0

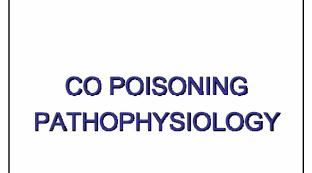
CO Exposure			
Source	Exposure (ppm)		
Fresh Air	0.06-0.5		
Urban Air	1-30		
Smoke-filled Room	2-16		
Cooking on Gas Stove	100		
Actively Smoking a Cigarette	400-500		
Automobile Exhaust	100,000		

CO Exposure


- CO absorption by the body is dependent upon:
 - Minute ventilation (V_{min}).

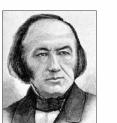


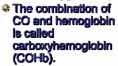
the environment. Concentration of O₂ in the environment.

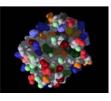


Firefighter Risks

- SCBA extremely important in CO prevention.
- CO often encountered during overhaul operations.

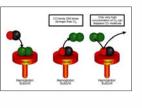


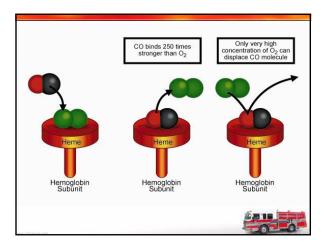

Pathophysiology


Pathophysiology of CO poleoning first described by French physician Claude Bernard in 1857.

Pathophysiology

- CO poisoning actually very complex.
- CO binds to hemoglobin with an affinity - 250 times that of oxygen.





Pathophysiology

- CO displaces O₂ from the hemoglobin binding sites.
- CO prevents O₂ from binding.
- COHb does not carry O₂.
- COHb causes premature release of remaining O₂ into the tissues.

Pathophysiology

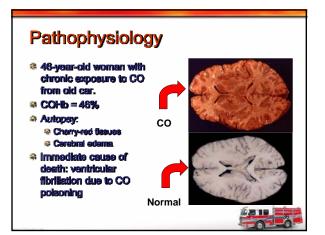
COHb ultimately removed from the circulation and destroyed.

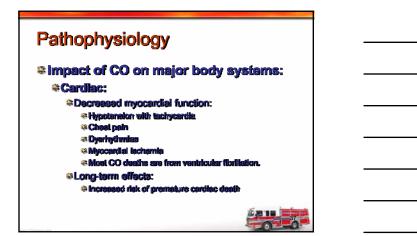
🏶 Half-life:

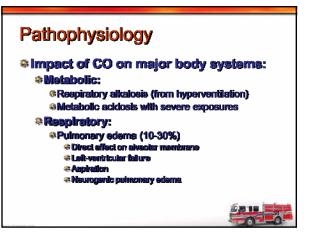
🏶 Room air: 240-360 minutes

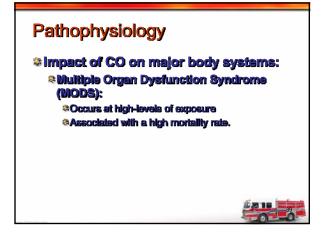
🏶 O₂ (100%): 80 minutes

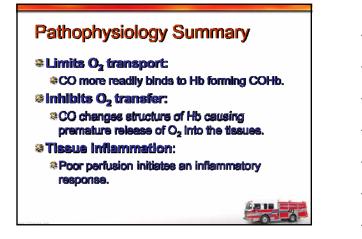
Hyperbaric O₂: 22 minutes




Source	COHb (%)
Endogenous	0.4-0.7
Tobacco Smokers:	
1 pack/day	5-6
2-3 packs/day	7-9
cigars	Up to 20
Urban Commuter	5
Methylene chloride (100 ppm for 8 hours)	3-5




Pathophysiology © CO also binds to other iron-containing proteins: © Myoglobin © Cytochrome © Binding to myoglobin reduces O₂ available in the heart: © Ischemia © Dysrhythmias © Cardiac dysfunction


Pathophysiology Impact of CO on major body systems: Neurologic: CNS depression resulting in impairment: Headacite Dizzness Confusion Satzuras Confusion Satzuras Confusion Confu

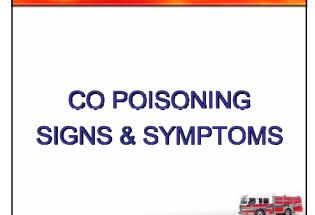
Pathophysiology Summary

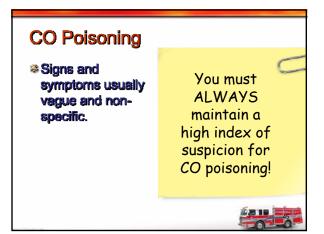
Poor cardiac function:

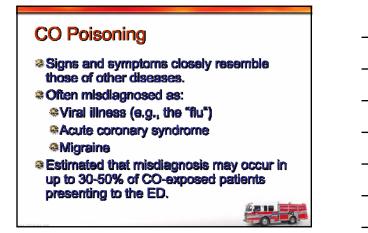
O₂ delivery can cause dysrhythmias and myocardial dysfunction.

Long-term cardiac damage reported after single CO exposure.

Pathophysiology Summary


Section:


- Results from nitric oxide (NO) increase.
- Cerebral vasodilation and systemic hypotension causes reduced cerebral blood flow.
- NO is largely converted to methemoglobin.
- Free radical formation:
 - NO accelerates free radical formation.
 - Endothelial and oxidative brain damage.

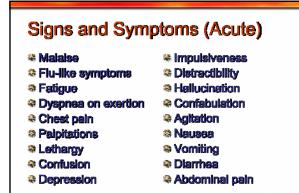


Patient Groups at Risk 🍣 Childrən. **Section 2** Section 4 Sect Rersons with heart disease. Pregnant women. Patients with increased oxygen demand. Patients with decreased oxygen-carrying capacity (i.e., anemias, blood cancers). Realization of the second seco -

0-

CO Poisoning

Classifications:


Acuta

Results from short exposure to a high level of CO.

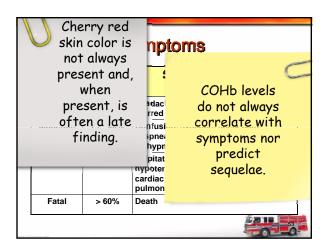
Chronic: Results from long exposure to a low level of CO.

- 🏶 Headache
- Drowsiness
- Dizziness
- Weakness
- Confusion
 Visual disturbances
- . Зунсора
- 🏶 Səlzurəs

- Fecal incontinence
- Urinary incontinence
 Memory disturbances
- winding distances
- Gait disturbances
 Bizarre neurologic
- symptoms & Coma
- Death

0

Firefighter Headaches


- While CO should always be considered a possible cause of headaches in working firefighters, there are more common causes:
 - Tight helmet ratchet
 - Too heavy a helmet (especially leather)
 Dehydration

Signs and Symptoms (Chronic)

Signs and symptoms the same as with acute CO poisoning except that onset and severity may be extremely varied.

-	

CO ppm	Duration	Symptoms	
50	8 hours	OSHA minimum	
200	2-3 hours	Mild headache, fatigue, nausea, dizziness	
400	1-2 hours	Serious headache—other symptoms intensify. Life-threatening > 3 hours	
800	45 minutes	Dizziness, nausea and convulsions. Unconscious within 2 hours. Death within 2-3 hours.	
1,600	20 minutes	Headache, dizziness and nausea. Death within 1 hour.	
3,200	5-10 minutes	Headache, dizziness and nausea. Death within 1 hour.	
6,400	1-2 minutes	Headache, dizziness and nausea. Death within 25-30 minutes.	
12,800	1-3 minutes	Death	

Signs and Symptoms

- CO may be the cause of the phenomena associated with haunted houses:
 - Strange visions
 - Strange sounds Feelings of dread

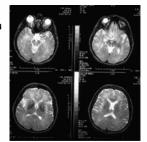
Hallucinations 🏘 inexolicable deaths

6

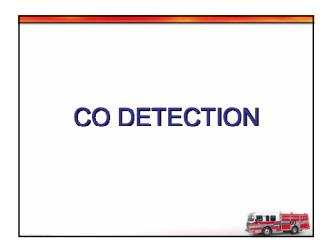
Long-Term Complications

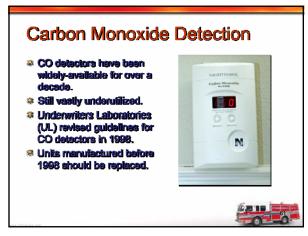
Delayed Neurologic Syndrome (DNS):

- Recovery seemingly apparent.
- Behavioral and neurological deterioration 2-40 days later.
- True prevalence uncertain (estimate range) from 1-47% after CO poisoning).
- Patients more symptomatic initially appear more apt to develop DNS.
- More common when there is a loss of consciousness in the acute poisoning.



Delayed Neurologic Syndrome Signs and Symptoms: Signs and Symptoms: Memory loss Disorientation Section 28 Section 24 😂 Ataxta Parkinsonism 🍣 Selzurea 🍣 Muüsm Cortical blindness Strinary incontinence Fecal incontinence Psychosis Sait disturbances Semotional lability Notor Notor disturbances ÉRI


ardiac Complications: 230 sequential patients with moderate to severe CO poisoning treated with HBO.				
CO Myocardial Injury	Patients (n)	Died (%)	5-year Surviva (%)	
Myocardial injury from CO	85	37.6	71.6	
No Myocardial injury	145	15.2	88.3	


Long-Term Complications

- Depression and anxiety can exist up to 12 months following CO exposure.
- Higher at 6 weeks in patients who attempted suicide by CO.
- No differences in rates between accidental and suicide-attempt at 12 months.

0

Carbon Monoxide Detection

- Biological detection of CO limited:
 Exhaled CO measurement.
 - Hospital-based carboxyhemoglobin levels (arterial or venous).

0 0

- Technology now available to detect biological COHb levels in the prehospital and ED setting.
- Referred to as COoximetry

- Hand-held devices now available to assess atmospheric levels of CO.
- Multi-gas detectors common in the fire service:
 - 🏶 Combustible gasses
 - @ CO 🕹 🔾
 - ⊛ H₂S

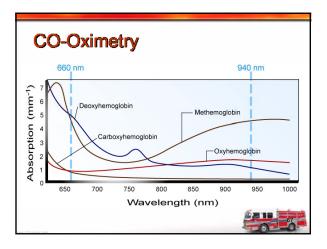
64 0

Carbon Monoxide Detection

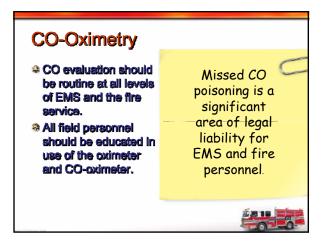
- New generation oximater/CO-oximater can detect 4 different
 - hemoglobin forms.

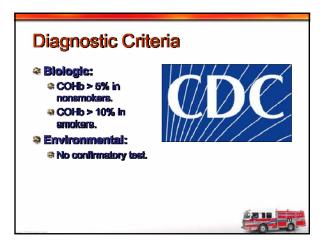
 - Pessyhernoglobin (Hb)
 Coghernoglobin (O_Hb)
 Carboxyhernoglobin (COHb)
 Methernoglobin (METHb)
- Providea:

 - ≋ SpO₂ ≇ SpCO
 - 📽 SpMET
 - 📽 Pulae rate



CO-Oximetry


- 🕸 Uses finger probe similar to that used in pulse oximetry.
- 🏶 Uses 8 different wavelengths of light (instead of 2 for pulse oximetry).
- Readings very closely correlate with COHb levels measured inhospital.



Diagnostic Criteria

* Suspected:

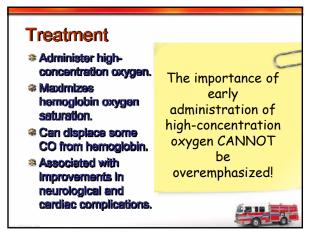
Potentially-exposed person, but no cradible threat exists.

🗟 Probable:

 Clinically-compatible case where cradible threat extens.

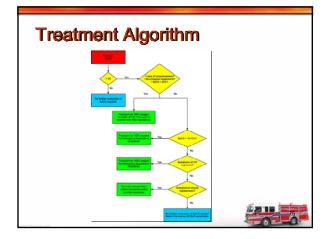
Clinically-compatible case where biological tests have confirmed exposure.

0-0


E T

Treatment

- Treatment is based on the severity of symptoms.
- Treatment generally indicated with SpCO > 10-12%.
- Be prepared to treat complications (i.e., selzures, dysrhythmias, cardiac ischemia).




Treatment

- Prehospital CPAP can maximally saturate hemoglobin and Increase oxygen solubility.
- Strongly suggested for moderate to severe poisonings.

a-1-6

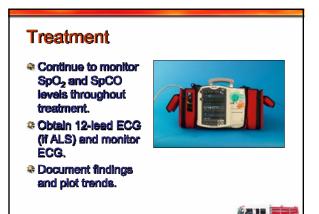
- tissue hypoxia. Significantly decreases
- alf-life of COHb.

6

Indications for HBO Therapy

Strongly consider for:

- Altered mental status
- Coma
- Second neurological deficits
- Seizures
- Pregnancy with COHb>15%
- History of LOC



Indications for HBO Therapy

Possibly consider for:

- Cardiovascular compromise (e.g., ischemia, dysrhythmias).
- Metabolic acidosis.
- Extremes of age.

Treatment

First-generation pulse oximeters may give falsely elevated SpO₂ levels in cases of carbon monoxide polsoning.

6

Cannot distinguish between O₂Hb and COHb.

CO Poisoning

- Remember, CO poisoning is the great imitator.
- Missed CO exposure often leads to death and disability.
- CO is a particular risk for firefighters.

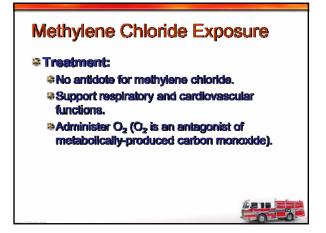
A simple COHb reading can save a life and possibly prevent long-term complications.

METHYLENE CHLORIDE

Methylene Chloride Exposure

Methylene chloride slowly metabolized to CO.

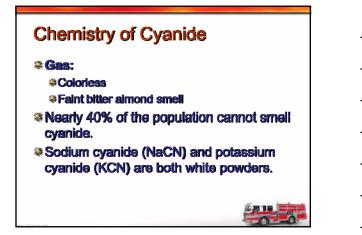
- Victims do not pose contamination risks to rescuers.
- Victims with contaminated clothing or skin can secondarily contaminate response personnel by direct contact or through off-gassing vapor.
- Methylene chloride vapor may also off-gas from the toxic vomitus of victims who have ingested methylene chloride.

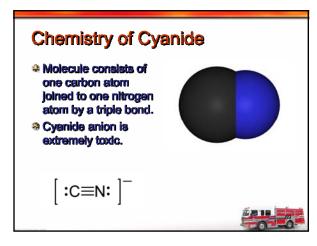

0

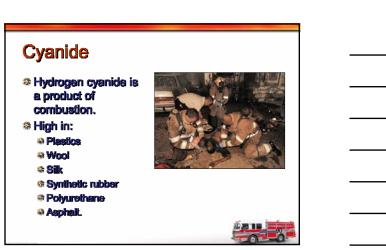
Methylene Chloride Exposure

Methylene chloride can cause:

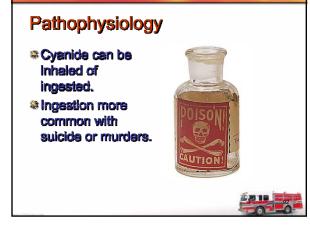
- Acute CNS depression.
- Respiratory depression.
- Cardiac dysrhythmias.
- Respiratory tract irritation (at high levels).
- Non-cardiogenic pulmonary edema (at high levels).





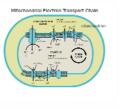

Carbon Monoxide and Cyanide

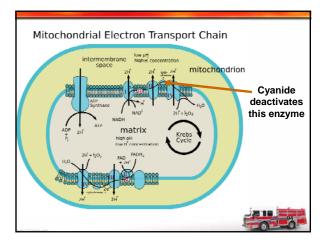
- Cyanide more often encountered in fires than once thought.
- The effects of CO and cyanide are cumulative.
- Symptoms of cyanide toxicity often attributed to CO because of lack of a high index of suspicion.

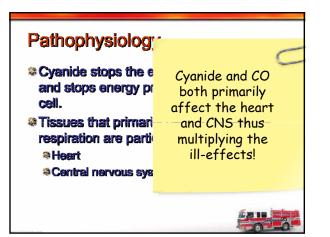


Cyanide

- Toxicity varies with chemical form.
- Hydrogen cyanide (HCN) gas at concentrations of 130 ppm can be fatal within an hour.
- eldizeinneq AH2O 🌣 exposure levels are 10 ppm as an 8-hour timeweighted average.




3 0


Pathophysiology

- 🍣 Cyanide is an irreversible enzyme inhibitor:
 - Cytochrome c oxidase
 - (aa₃). Part of the 4th complex of the electron transport chain.
 - Found in the shelves (cristae) of the mitochondria in the cells.

Cyanide Treatment

Antidotes available:

Cyanida Antidota Kit: Anyl nitrita Sodium nitrita Sodium thiosulfata Hydroxocobalamin

Cyanide Treatment

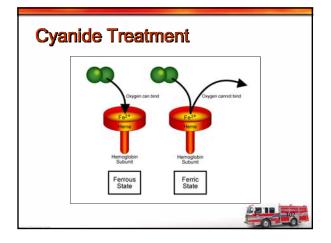
- The nitrites promote the formation of methemoglobin.
- Cyanide has a greater affinity for methemoglobin (METHb) than the cytochrome oxidase enzyme.
- The binding of cyanide to METHb frees cytochrome oxidase so that energy production is resumed.

Cyanide Treatment

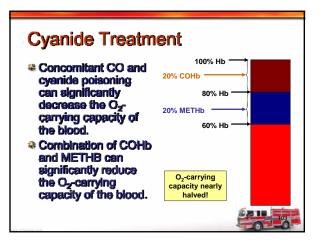
- Sodium thiosulfate binds to cyanide and forms thiocyanate.
- Thiocyanate much less toxic than cyanide anion and excreted through the kidneys.

99 0

6


Cyanide Treatment Hydroxocobalamin Precursor to cyanocobalamin (Vitamin B₁₂). Hydroxocobalamin combines with cyanide to form cyanocobalamin which is excreted through the kidneys. FDA approval in US obtained in December 2008. Marketed as CyanokitTM.

Cyanide Treatment


Problems (related to nitrites):

- *METHb does not transport O2.
- The conversion of HB to METHb changes the state of the herne molecule where O₂ binds.
- METHb has here in the ferric (Fe³⁺) state and not the ferrous state (Fe²⁺).
- O₂ can only bind to here when in the Fe²⁺ state.

Cyanide Treatment

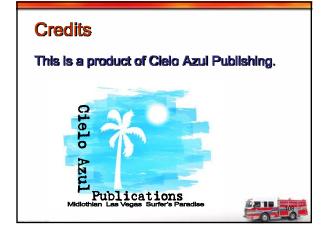
Children are particularly at risk for hypotension and adverse effects from methemoglobinemia.

CO and Cyanide

- Parts of cyanide antidot nitrite) induce methemo
- Cyanide antidotes and elevated COHb and ME reducing O₂ capacity of
- Sodium nitrite should be combination cyanide/C(>10%.
- Hydroxocobalamin converse systems to cyanocobalamin (Vitamin B₁₂) which is ranallycleared.

Hydroxocobalamin is the cyanide antidote of choice for mixed cyanide and CO poisonings.

Financial Disclosure


This program was prepared with an unrestricted grant from Masimo. Masimo did not control content.

Credits

- Content: Bryan Biedsoe, DO, FACEP
- Art: Robyn Dickson (Wolfblue Productions)
- Power Point Template: Code 3 Visual Designs
- The following companies allowed use of their images for this presentation:
 - **Brady/Pearson Education**
 - Scripps/University of California/San Diego
 - JEMS/Brook Wainwright
 - **& Gien Eliman**
 - Bryan Bledsoe, DO, FACEP
 - **Masimo, Inc.**

