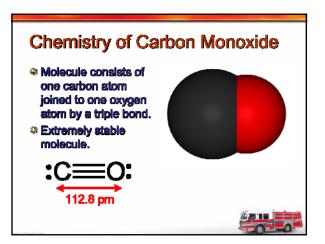
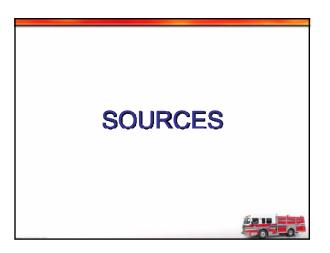

Review Board

- 🎕 Roy Alson, MD, PhD, FACEP
- Sames Augustine, MD, FACEP
- Edward Dickinson, MD, FACEP
- 🏽 Marc Eckstein, MD, FACEP
- Sleven Kaiz, MD, FACEP
- 🌣 Mike McEvoy, PhD, RN, EMT-P
- Jos A. Nelson, DO, MS, FACOEP, FACEP
- 😂 Ed Racht, MD
- 🧇 Mike Richards, MD, FACEP
- 🏽 Kaith Wesley, MD, FACEP
- Se Paula Willoughby-DeJesus, DO, MHPE, FACOEP

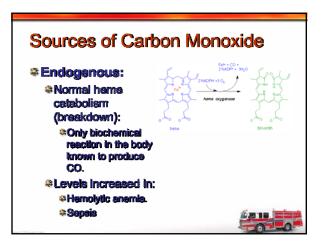
Carbon monoxide is the most frequent cause of poisonings in industrialized countries.




Chemistry of Carbon Monoxide

🍣 Gas:

- 📽 Coloriess
- 🕸 Odorless
- 🏶 Tasteless
- Nonirritating
- Results from the incomplete combustion of carbon-containing fuels.
- Abbreviated "CO"



Sources of Carbon Dioxide

Endogenous

- Exogenous
- Methylene chloride



Sources of Carbon Monoxide

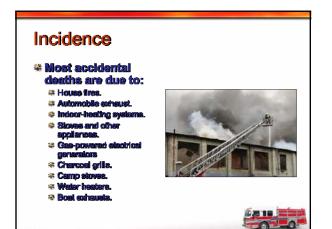
Exogenous:

- 🏽 House fires.
- Gas -powered electrical generators.
- Automobile exhaust.
- * Propane-powered
- vehicles.
- 😔 Heaters.
- 🕸 Camp sloves.
- 🏶 Boat exhaust.
- 🌣 Cigaretie smoke.

Incidence

CO is leading cause of poisoning deaths.

- CO may be responsible for half of all poisonings worldwide.
- ~5,000-6,000 people die annually in the United States as a result of CO poisoning.
- ~40,000–50,000 emergency department visits annually result from CO poisoning.



Incidence

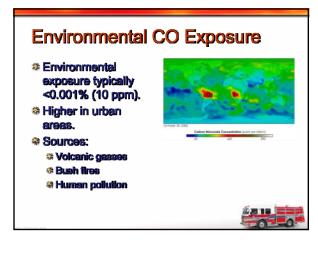
- Accidental CO poisoning deaths declining: Improved motor
 - vahicle emission policiea.
 - Use of catalytic converters.

Incidence

- Increased accidental CO deaths:
 - Patient > 65 years of age.
 - 🏶 Male
- Ethanol Intoxication.
 Accidental deaths
- peak in winter:
- Use of heating systems.
- Closed windows.

Incidence

- Significant increase in CO poisoning seen following disasters.
- Primarily relates to loss of utilities and reliance on gasolinepowered generators and use of fuelpowered heaters.


Incidence

- Fetal hemoglobin has a much greater affinity for CO than adult hemoglobin.
- Pregnant mothers may exhibit mild to moderate symptoms, yet the fetus may have devastating outcomes.

0-0

6/1	2/2	007
-----	-----	-----

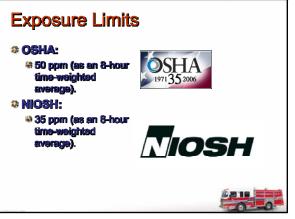
CO Exposure				
Source	Exposure (ppm)			
Fresh Air	0.06-0.5			
Urban Air	1-30			
Smoke-filled Room	2-16			
Cooking on Gas Stove	100			
Actively Smoking a Cigarette	400-500			
Automobile Exhaust	100,000			

CO absorption by the body is dependent upon:

Minute ventilation
 (V_{min}).

Duration of exposure.
 Concentration of CO in

the environment.

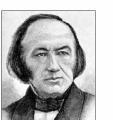

Concentration of O₂ in the environment.

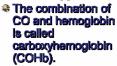
DB TH

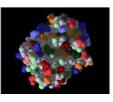
0-0-

Firefighter Risks

- SCBA extremely important in CO prevention.
- CO often encountered during overhaul operations.

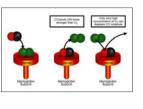


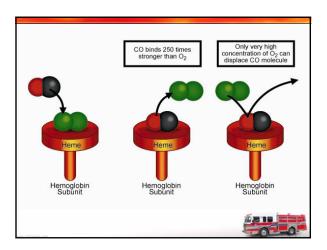

Pathophysiology


Pathophysiology of CO poisoning first described by French physician Claude Bernard in 1857.

Pathophysiology

- CO poisoning actually very complex.
- CO binds to hemoglobin with an affinity - 250 times that of oxygen.





Pathophysiology

- CO displaces O₂ from the hemoglobin binding sites.
- CO prevents O₂ from binding.
- COHb does not carry O₂.
- COHb causes premature release of remaining O₂ into the tissues.

Pathophysiology

Scolib ultimately removed from the circulation and destroyed.

🏶 Half-life:

Room air: 240-360 minutes

🕸 O₂ (100%): 80 minutes

Hyperbaric O₂: 22 minutes

Pathophysiology

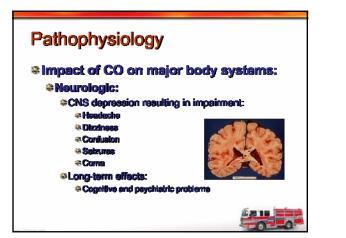
- CO also binds to other iron-containing proteins:
 - 🏶 Myoglobin
 - **Cytochrome**
- Binding to myoglobin reduces O₂ available in the heart:

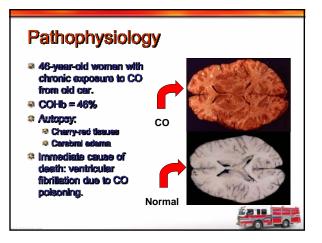
 - 🏶 Ischemia
 - Dysrhythmlas
 - Cardiac dysfunction

Source	COHb (%)
Endogenous	0.4-0.7
Tobacco Smokers:	
1 pack/day	5-6
2-3 packs/day	7-9
cigars	Up to 20
Jrban Commuter	5
Methylene chloride (100 ppm for 8 hours)	3-5

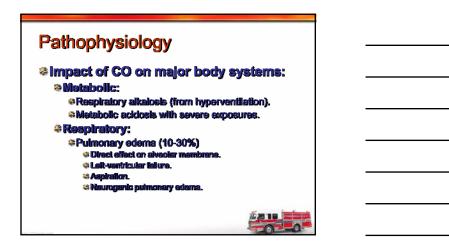
* Nitric oxide (NO):

- Highly-reactive gas that participates in numerous blochemical reactions.
- A Oxygen free-radical
 A Levels increased with CO exposure.


Pathophysiology


🍣 Nitric Oxide (NO):

- Causes cerebral vasocilation:
 Syncope
 Headache
- Headache
 May lead to oxidative
- damage to the brain: Probable cause of syndrome of delayed reurologic sequelae (DNS).
- Associated with reperfusion injury.


Pathophysiology

Impact of CO on major body systems:

& Cardiac:

- Secreased myocardial function:
 - SHypotension with techycardia.
 - 🧠 Cheal pain.
 - 🏶 Dyerhythmiae.
 - @Myocardial ischarria.
 - Most CO deathe are from ventricular fibrillation.
- Scipelie met-gno.1
 - 👒 increased risk of premature cardiac death.

Pathophysiology

Impact of CO on major body systems:

* Multiple Organ Dysfunction Syndrome (MODS):

Occurs at high-levels of exposure.
Associated with a high mortality rate.

Pathophysiology Summary

Science Constraints O2 transport:

SCO more readily binds to Hb forming COHb.

Inhibits O₂ transfer:

CO changes structure of Hb causing premature release of O₂ into the tissues.

STISSUE Inflammation:

Poor perfusion initiates an inflammatory response.

Pathophysiology Summary

Poor cardiac function:

- a√ O₂ delivery can cause dysrhythmias and myocardial dysfunction.
- Long-term cardiac damage reported after single CO exposure.
- Increased activation of nitric oxide (NO):
 - Peripheral vasodilation.
 - Miniammatory response.

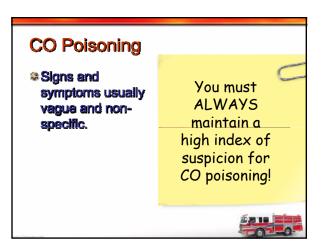
Pathophysiology Summary

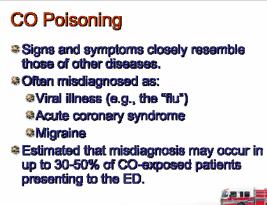
Vasodilation:

- Results from NO increase.
- Cerebral vasodilation and systemic hypotension causes reduced cerebral blood flow.
- NO is largely converted to methemoglobin.

Free radical formation:

- NO accelerates free radical formation.
- Endothelial and oxidative brain damage.




Patient Groups at Risk

- Children.
- Elderly.
- Persons with heart disease.
- Pregnant women.
- Patients with increased oxygen demand.
- Patients with decreased oxygen-carrying capacity (i.e., anemias, blood cancers).
- Patients with chronic respiratory insufficiency.

0-0-

0-0

CO Poisoning

Classifications:

Acute
Results from short exposure to a high level of CO.
Chronic:

0

Results from long exposure to a low level of CO.

Signs and Symptoms (Acute)

🕸 Malaise

- Flu-like symptoms
- 🏶 Fatigue
- Dyspnea on exertion
- 🍣 Chest pain
- Palpitations
- Lethargy
- Confusion
- Depression

- Impulsiveness
 Distractibility
- * Hallucination
- Sconfabulation
- Agitation
- 🖗 Nausea
- Vomiting
- Diarrhea
- Abdominal pain
 - annea pean

0-0-

Firefighter Headaches

While CO should always be considered a possible cause of headaches in working firefighters, there are more common causes:

@Tight helmet ratchet.

Too heavy a helmet (especially leather).
© Dehydration.

0

Signs and Symptoms (Chronic)

Signs and symptoms the same as with acute CO poisoning except that onset and severity may be extremely varied.

skin not pres pres ofte	erry red color is always ent and when sent, is en a late nding.	adac	symptoms nor
		nypoter cardiac pulmon	sequelae.
Fatal	> 60%	Death	

_
_
_

CO ppm	Duration	Symptoms
50	8 hours	OSHA minimum
200	2-3 hours	Mild headache, fatigue, nausea, dizziness
400	1-2 hours	Serious headache—other symptoms intensify. Life-threatening > 3 hours
800	45 minutes	Dizziness, nausea and convulsions. Unconscious within 2 hours. Death within 2-3 hours.
1,600	20 minutes	Headache, dizziness and nausea. Death within 1 hour.
3,200	5-10 minutes	Headache, dizziness and nausea. Death within 1 hour.
6,400	1-2 minutes	Headache, dizziness and nausea. Death within 25-30 minutes.
12,800	1-3 minutes	Death

Signs and Symptoms

CO may be the cause of the phenomena associated with haunted houses:

Strange visions.

- 🎕 Strange sounds.
- Feelings of dread.
- Hallucinations.
- 🌣 Inexplicable deaths.

Long-Term Complications

Delayed Neurologic Syndrome (DNS):

- Recovery seemingly apparent.
- Behavioral and neurological deterioration 2-40 days later.
- True prevalence uncertain (estimate range from 1-47% after CO poisoning).
- Patients more symptomatic initially appear more apt to develop DNS.
- More common when there is a loss of consciousness in the acute poisoning.

Delayed Neurologic Syndrome

Signs and Symptoms: Signs and Symptoms: Socientation 😂

- 😂 Memory loss
- Confusion 📽 Ataxta
- 🕸 Selzures
- Urinary incontinence Secal Incontinence
- Emotional lability
- Mutism A Cortical blindness

Hallucinations

🏶 Parkinsonism

Psychosis

EN IN

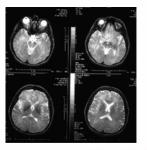
0 0

- Gait disturbances Solver motor
- disturbances EN I

0

Section:

230 sequential patients with moderate to severe CO poisoning treated with HBO.


CO Myocardial Injury	Patients (n)	Died (%)	5-year Survival (%)
Myocardial injury from CO	85	37.6	71.6
No Myocardial injury from CO	145	15.2	88.3

Henry CR, Satran D, Lindgren B, et al. Myocardial injury and long-term mortality following moderate to severe carbon monoxide poisoning. *JAMA*. 2006;295:398-402

Long-Term Complications

- Depression and andety can exist up to 12 months following CO exposure.
- Higher at 6 weeks in patients who attempted suicide by CO.
- No differences in rates between accidental and suicide-attempt at 12 months.

0

CO DETECTION

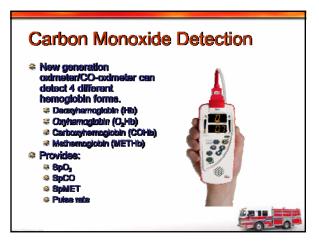
Codetectors have been widely-available for over a decade. Still vasity underutilized. Underwriters Laboratories (UL) revised guidelines for CO detectors in 1998. Units manufactured before 1998 should be replaced.

Carbon Monoxide Detection

- Biological detection of CO limited:
 - Exhaled CO
 measurement.
 Hospital-based
 - carboxyhemoglobin levels (arterial or venous).

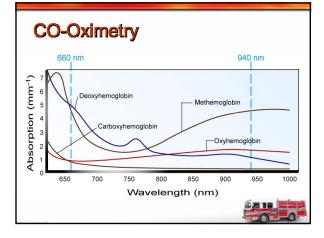
Carbon Monoxide Detection

Technology now available to detect biological COHb levels in the prehospital and ED setting.

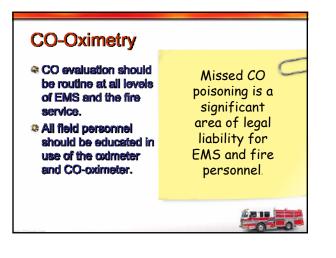


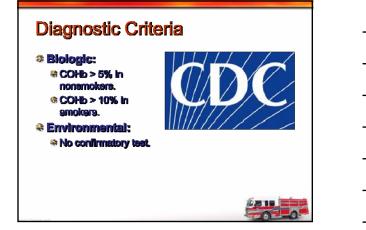
Carbon Monoxide Detection

- Hand-held devices now available to assess atmospheric levels of CO.
- Multi-gas detectors common in the fire service:
 - Combustible gasses
 - 🧠 CO
 - 🏶 <mark>0</mark>2
 - ⊜ H₂S



CO-Oximetry


- Uses finger probe similar to that used in pulse oximetry.
- Uses 8 different wavelengths of light (Instead of 2 for pulse oximetry).
- Readings very closely correlate with COHb levels measured inhospital.



Treatment

- Treatment is based on the severity of symptoms.
- Treatment generally indicated with SpCO > 10-12%.

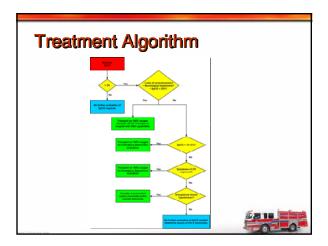
Be prepared to treat complications (i.e., selzures, dysrhythmlas, cardiac ischemia).

Treatment

- Administer highconcentration oxygen.
- Maximizes hemoglobin oxygen saturation.
- Can displace some CO from hemoglobin.
- Associated with improvements in neurological and cardiac complications.

The importance of early administration of high-concentration oxygen CANNOT

be overemphasized!


0--0

Treatment

- Prehospital CPAP can maximally saturate hemoglobin and increase oxygen solubility.

0-0

Strongly suggested for moderate to severe polsonings.

Treatment

- Efficacy of hyperbaric oxygen therapy (HBO) is a matter of conjecture although atill commonly practiced.
- Generally reserved for severe poisonings.
- May aid in alleviating tissue hypoxia.
- Significantly decreases half-life of COHb.

Indications for HBO Therapy

Strongly consider for:

Altered mental status.

Coma.

Focal neurological deficits.

@Seizures.

Pregnancy with COHb>15%.
Selection of LOC.

Indications for HBO Therapy

Possibly consider for:

Cardiovascular compromise (e.g., ischemia, dysrhythmias).

Metabolic acidosis.

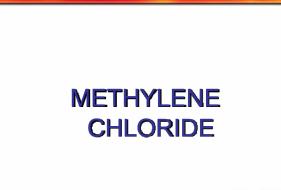
Extremes of age.

Treatment

- Continue to monitor SpO₂ and SpCO levels throughout treatment.
- Obtain 12-lead ECG (If ALS) and monitor ECG.
- Document findings and plot trends.

Treatment

- First-generation pulse oximeters may give faisely elevated SpO₂ levels in cases of carbon monoxide polsoning.
- Cannot distinguish between O₂Hb and COHb.



CO Poisoning

- Remember, CO poisoning is the great imitator.
- Missed CO exposure often leads to death and disability.
- CO is a particular risk for firefighters.
- A simple COHb reading can save a life and possibly prevent long-term complications.

0-0-

Methylene Chloride Exposure

- Methylene chloride slowly metabolized to CO.
- Victims do not pose contamination risks to rescuers.
- Structures with contaminated clothing or skin can secondarily contaminate response personnel by direct contact or through off-gassing vapor.
- Methylene chloride vapor may also off-gas from the toxic vomitus of victims who have ingested methylene chloride.

Methylene Chloride Exposure

Methylene chloride can cause:

- Acute CNS depression.
- Respiratory depression.
- Cardiac dysrhythmias.
- Respiratory tract irritation (at high levels).
- Non-cardiogenic pulmonary edema (at high levels).

Methylene Chloride Exposure

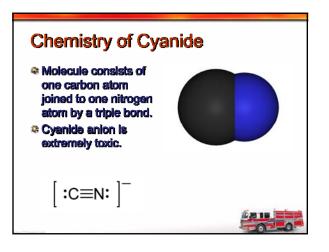
StreetT 🛠

- No antidote for methylene chloride.
- Support respiratory and cardiovascular functions.
- Administer O₂ (O₂ is an antagonist of metabolically-produced carbon monoxide).

DOUBLE TROUBLE: CO and CYANIDE

Carbon Monoxide and Cyanide

- Cyanide more often encountered in fires than once thought.
- The effects of CO and cyanide are cumulative.
- Symptoms of cyanide toxicity often attributed to CO because of lack of a high Index of suspicion.


0

Chemistry of Cyanide

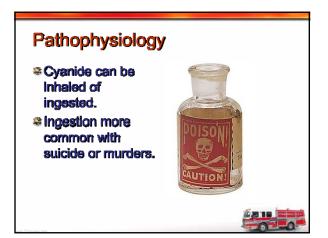
🍣 Gas:

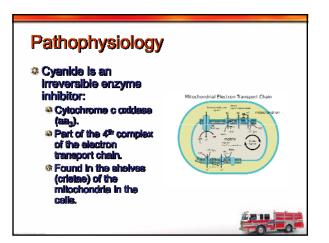
- Colorless.
- Faint bitter almond smell.
- Nearly 40% of the population cannot smell cyanide.
- Sodium cyanide (NaCN) and potassium cyanide (KCN) are both white powders.

Cyanide

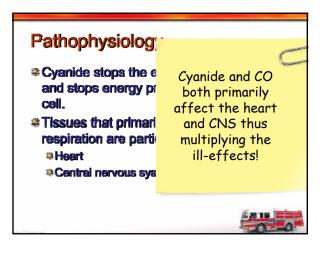
- Hydrogen cyanide is a product of combustion.
- 🏶 High in:
 - Plastics.

- 🏶 Wool @ Silk.
- Synthetic rubber.
- Polyurethane.
- 🏶 Asphalt.




Cyanide

- Toxicity varies with chemical form.
- Hydrogen cyanide (HCN) gas at concentrations of 130 ppm can be fatal within an hour.
- OSHA permissible exposure levels are 10 ppm as an 8-hour timewaighted average.



Cyanide Treatment

Antidotes available:

Cyanide Antidote Kit:
 Amyl nitrite.
 Sodium nimte.
 Sodium thiosulfate.
 Hydroxocobalamin.

Cyanide Poisoning

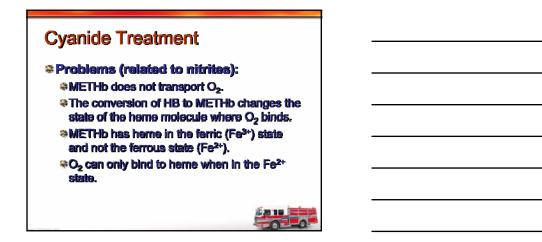
- Arryl nitrite is administered via inhalation or ventilation.
- Sodium nitrite is administered intravenously.
- Sodium thiosulfate is administered intravenously.

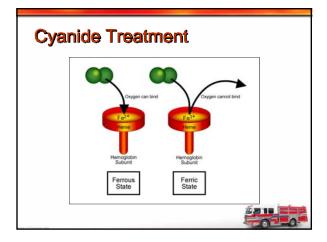
Cyanide Treatment

- The nitrites promote the formation of methemoglobin.
- Cyanide has a greater affinity for methemoglobin (METHb) than the cytochrome oxidase enzyme.
- The binding of cyanide to METHb frees cytochrome oxidase so that energy production is resumed.

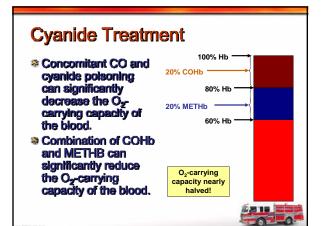
Cyanide Treatment

- Sodium thiosulfate binds to cyanide and forms thiocyanate.
- Thiocyanate much less toxic than cyanide anion and excreted through the kidneys.




Cyanide Treatment

Se Hydroxocobalamin

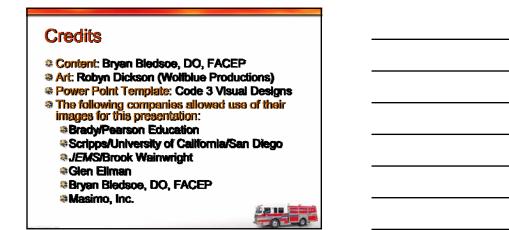

- Precursor to cyanocobalamin (Vitamin B₁₂).
- Hydroxocobalamin combines with cyanide to form cyanocobalamin which is excreted through the kidneys.
- FDA approval in US obtained in December 2006.
- Marketed as Cyanokit™.

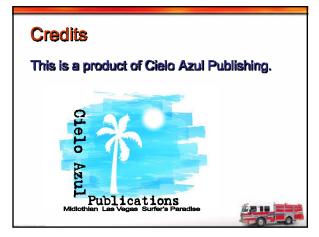
CO and Cyanide

- Parts of cyanide antidot nitrite) induce methemo
 Cyanide antidotes and elevated COHb and ME reducing O₂ capacity of
- Sodium nitrite should be combination cyanide/Ct >10%.
- Hydroxocobalamin is the cyanide antidote of choice for mixed cyanide and CO

poisonings.

Hydroxocobalamin converte systeme to cyanocobalamin (Vitamin B₁₂) which is renallycleared.




Financial Disclosure

This program was prepared with an unrestricted grant from Masimo. Masimo did not control content.

