
Endorsements

This educational module has been endorsed by the following professional organizations:

Review Board

- + Roy Alson, MD, PhD, FACEP
- 4 James Augustine, MD, FACEP
- Edward Dickinson, MD, FACEP
- 4 Marc Eckstein, MD, FACEP
- * Steven Katz, MD, FACEP
- Mike McEvoy, PhD, RN, EMT-P
- + Joe A. Nelson, DO, MS, FACOEP, FACEP
- 🚸 Ed Racht, MD
- 🔸 Mike Richards, MD, FACEP
- + Keith Wesley, MD, FACEP
- Paula Willoughby-DeJesus, DO, MHPE, FACOEP

Respiratory Gasses

Normal Atmospheric

Gasses:

Nitrogen (N₂)

4 Water Vapor (H₂O)

- Trace gasses:

Argon (Ar)

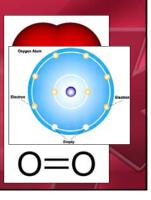
Neon (Ne) Helium (He)

Respiratory Gasses

+ Most important respiratory gasses: + Oxygen (O₂) + Carbon Dioxide (CO₂)

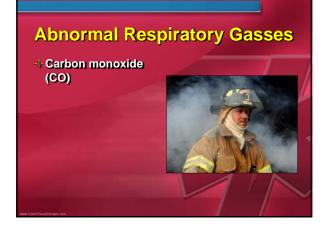
Atmosphe	ric Gasse	S	
GAS [†]	PRESSURE (mm Hg)	PERCENTAGE (%)	
Nitrogen (N ₂)	593.408	78.08	
Oxygen (O ₂)	159.220	20.95	100
Argon (Ar)	7.144	0.94	
Carbon Dioxide (CO ₂)	0.288	0.03	ł
Neon (Ne)	0.013	0.0018	
Helium (He)	0.003	0.0005	
TOTAL	760	100	\sim
† = dry air at sea level.			

Re	spirat	0	ry Ga	S	ses	1			
GAS	Atmospheric Air (mm Hg)	%	Humidified Air (mm Hg)	%	Alveolar Air (mm Hg)	%	Expired Air (mm Hg)	%	1
N ₂	597.0	78.6	563.4	74.0	569.0	74.9	566.0	74.5	
02	159.0	20.8	149.3	19.7	104.0	13.6	120.0	15.7	
CO2	0.3	0.04	0.3	0.04	40.0	5.3	27.0	3.6	1.1%
H₂O	3.7	0.50	47.0	6.20	47.0	6.2	47.0	6.2	
TOTAL	760	100	760	100	760	100	760	100	
www.Codellinsue/Decign	1500 C								


Oxygen

- 4 Odorless.
- Tasteless.
- + Colorless.
- + Supports combustion.
- Present in the atmosphere as a diatomic gas (O₂).
- Necessary for animal life.

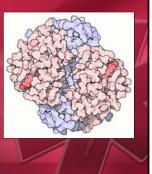
Oxygen


- Derived from plant photosynthesis: Algae (75%).
- Terrestrial Plants (25%).
- Oxygen atom must share electrons for stability.

Carbon Dioxide

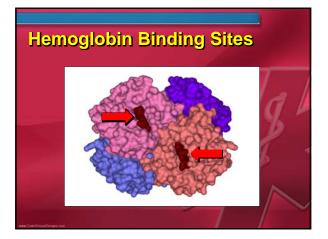
- + Coloriess.
- Sour taste at high concentrations.
- Found in very low concentrations in fresh air.
- + Asphyxiant.

Carbon Dioxide Waste product of animal life (carbohydrate and fat metabolism). Contains 2 atoms of oxygen and 1 atom of carbon.



Carbon Monoxide

- + Colorless
- **4 Odorless**
- Tasteless
- Results from incomplete combustion of carbon-containing compounds.
- Heavier than air.


Hemoglobin

- Protein-Iron Complex.
- Transports oxygen to peripheral tissues.
- Removes a limited amount of carbon dioxide from the peripheral tissues.

0:

112.8 p

Hemoglobin

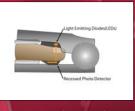
- The binding of oxygen changes the conformation (shape) of the hemoglobin molecule,
- Deoxyhemoglobin is converted to oxyhemoglobin.

oxy

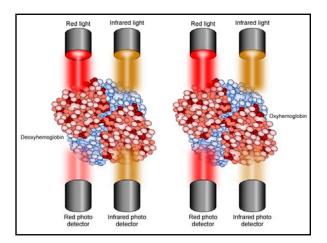
Respiratory Gas Measurement

 Arterial Blood Gas Sampling
 →Pulse Oximetry
 ♦CO-Oximetry

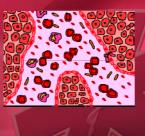
Arterial Blood G	asses	
+ Excellent diagnostic	Parameter	Normal
tool.	рН	7.35-7.45
Impractical in the prehospital setting.	PO ₂	80-100 mm Hg
	PCO ₂	35-45 mm Hg
A DESCRIPTION OF TAXABLE PARTY.	HCO ₃ -	22-26 mmol/L
and the second second	BE	-2 - +2
	SaO ₂	> 95%
www.com/insur/Drivers.com		

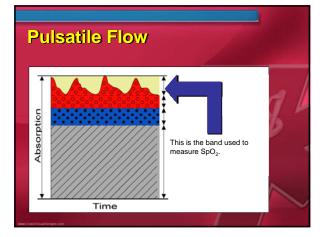


- Introduced in early 1980s.
- Non-invasive measurement of oxygen saturation.
- 4 Safe
- Inexpensive


Pulse Oximetry

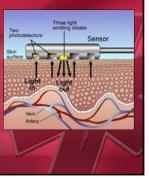
- How it works:
 - Probe is placed over a vascular bed (finger, earlobe).
 - Light-emitting diodes (LEDs) emit light of two different wavelengths:
 Red = 660 nm
 - 4 Infrared = 940 nm


- Some light is absorbed by: Arterial blood Venous blood
- Tissues
 Light that passes through the tissues is detected by a photodetector.



- * Only inflow of blood is used to determine SpO₂.
- Hence the name "Pulse Oximetry"
- Hb and HbO₂ absorb light and different rates due to color and conformation.

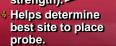
Oximetry Probe Placement


- Finger

Oximetry Probe Placement

 Accuracy falls when LEDs and photoreceptors poorly aligned.
 Accuracy decreases with lower pulse oximetry readings.

- Some manufacturers use reflective oximetry for monitoring.
- LEDs and photodetectors in same electrode.
- Light reflected from the tissues and detected by photodetectors and findings interpreted by the software in the oximeter.
- Can be used on forehead or back.



- HbO₂ absorbs more infrared light than Hb.
 Hb absorbs more red
- light than HbO₂.

Perfusion Index

- Reflects the pulse strength at the monitoring site.
- Ranges from 0.02% (very weak pulse strength) to 20% (very strong pulse strength).

Hand Hill Con-

Pulse Oximetry

SaO₂ or SpO₂?

- SaO₂ used for oxygen saturation readings derived from arterial blood gas analysis.
- SpO₂ used for oxygen saturation readings from pulse oximetry.
- SpO₂ and SaO₂ are normally very close.

- ***Pulse oximetry tells you:** SpO₂
 - **4 Pulse rate**

Pulse oximetry cannot tell you:

- +O2 content of the blood Amount of O2 dissolved in blood
- Respiratory rate or tidal volume (ventilation)
- Cardiac output or blood pressure.

Who Should Use?

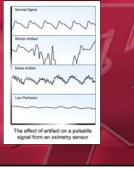
- Any level of prehospital care provider who administers O2. 4 First Responders
 - I EMTs

 - Paramedics

Prehospital Indications

- 1. Monitor the adequacy of arterial of arterial oxyhemoglobin saturation (SpO2) 2. To quantify the SpO₂ response to an intervention.
- 3. To detect blood flow in endangered body regions (e.g., extremities)

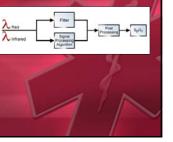
Limitations


- Oximetry is NOT a measure of ventilation (EtCO₂ a better measure of ventilation).
- Oximetry may lag behind hypoxic events.
- Oximetry is not a substitute for physical examination.
- Very low saturation states may be inaccurate due to absence of measured SpO₂ levels in the database.

First-Generation Oximeter Problems

- False Readings:
 - + Hypotension.
 - Hypothermia.
 Vasoconstriction.
 - Dyes/pigments (e.g., nail polish).
 - Movement may cause false reading in absence of pulse.
- Abnormal hemoglobin: + COHb.
 - + METHb.
- Oximeter can't perform:
- Bright ambient lighting.
- Shivering.
 Helicopter transport.

First-Generation Oximeter Problems


- Motion, noise, and low perfusion states can cause artifacts and false oximetry readings.
- These have been eliminated or minimized in second-generation oximeters.

Second-Generation Technology

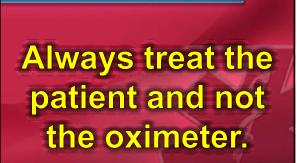
Newer technology uses signal processing to minimize artifacts and false readings: Adaptive Filters

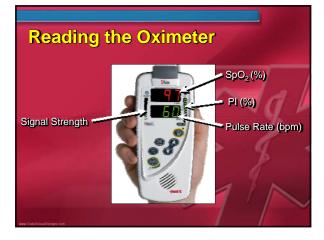
- Signal Processing Algorithms

Second-Generation Technology

- Technology prevents:
 - Motion artifact.
 False readings during low-flow states.
 - + False bradycardias.
 - False hypoxemias.
 - 4 Missed desaturations.
 - -> Missed bradycardias.
 - Data dropouts.
 - Effects of dyshemoglobins.

Myths

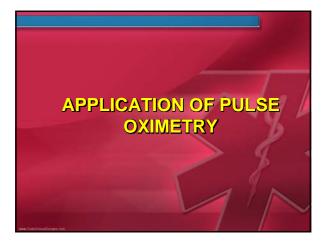

- Age affects SpO₂
- Gender affects SpO₂
- Anemia affects SpO₂
- SpO₂ inaccurate in dark-skinned individuals.
- Jaundice affects
 SpO₂.



Prehospital Usage

- + Assure scene safety.
- + Initial assessment.
- + ABCs
- Apply oxygen when appropriate (either with or after oximetry).
- Secondary Assessment
- Ongoing monitoring.

What Do	es it M	lean?	
SpO ₂ READ	DING (%)	INTERPRETATION	1
95 – 1	00	Normal	
91 –	94	Mild Hypoxemia	
86 –	90	Moderate Hypoxemia	N.
< 85	5	Severe Hypoxemia	
www.CobsDivisionDiricipits.asm			



11109	rventions	
SpO ₂ READING (%)	INTERPRETATION	INTERVENTION
95 – 100	Normal	Change FiO ₂ to maintain saturation.
91 – 94	Mild Hypoxemia	Increase FiO ₂ to increase saturation.
86 - 90	Moderate Hypoxemia	 Increase FiO₂ to increase saturation. Assess and increase ventilation.
< 85	Severe Hypoxemia	 Increase FiO₂ to increase saturation. Increase ventilation.

Oximetry to Assess Circulation

- Oximeter probe can be placed onto tissue distal to an injury to detect circulation.
- Oximeter can monitor distal circulation with fractures and crush injuries.
- Clinical correlation always needed.

 Prepare the device:
 Fresh batteries
 Wires and probe in good repair.

- Explain the procedure to the patient.
- Apply pulse oximetry probe according to manufacturer's recommendations.

- Turn on the oximeter.
- Allow it to proceed through start and self-checks.

- Check for readings.

 Check Perfusion Index (PI).
 Adjust probe, if needed, for best signal.

- Monitor pulse rate and SpO₂.
- Adjust oxygen administration to maintain desired SpO₂ levels.

Oxygen Administration

Items required:

4Oxygen source

Pressure regulator

+Flow meter

+Humidifier (optional)

Connecting tubing

Delivery device

Oxygen Administration

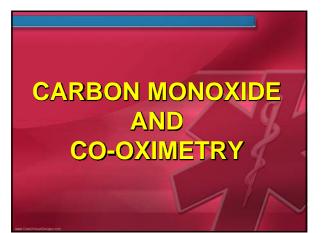
+Delivery devices:

Oxygen need and patient comfort should drive device selection,

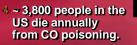
Oxygen Administration

A nasal cannula is comfortable for most patients, yet delivers only a low oxygen concentration.

Oxygen Administration

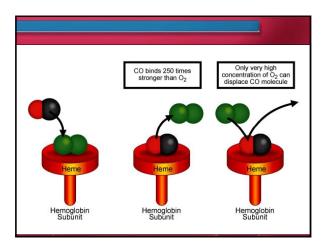

+A non-rebreather mask delivers close to 100% oxygen.

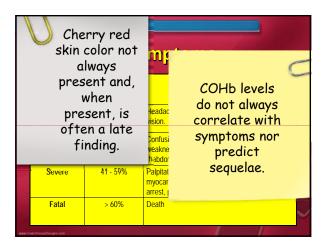
Oxygen Administration


- Continuous positive airway pressure (CPAP) is effective in maximizing hemoglobin oxygen saturation.
- Uses include:
 - & Congestive heart failure
 - + Acute pulmonary edema
 - * Drowning
 - +CO exposure

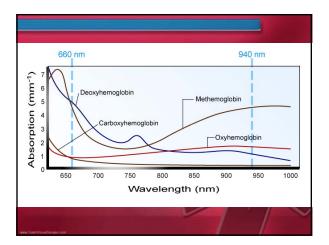
Carbon Monoxide

Carbon monoxide (CO) is the leading cause of poisoning deaths in industrialized countries,




Carbon Monoxide

- CO results from the incomplete combustion of carbon-based fuels.
- It is odorless, colorless and tasteless.
- CO is heavier than air and tends to accumulate in the lower aspect of structures.



Carbon Monoxide

- CO detection previously required hospital-based ABGs to measure COHb.
- Technology now available to detect COHb levels in the prehospital and ED setting.

CO-Oximetry

- CO evaluation should be routine at all levels of EMS and the fire service.
- All field personnel should be educated in use of the oximeter and COoximeter.

Missed CO poisoning is a significant legal risk for EMS and fire service personnel.

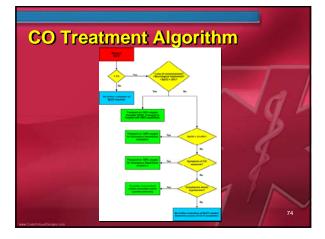
6/13/2	007
--------	-----

COHb Levels	s in Persons	3-74 Years	
Smoking Status	% COHb	% COHb (98 th percentile)	1
	(mean ± σ)	· · · /	
Nonsmokers	0.83 ± 0.67	< 2.50	
Current Smokers	4.30 ± 2.55	≤ 10.00	
All persons combined	1.94 ± 2.24	≤ 9.00	
 aa Turuur Decigni inte		1 /	۲

CO Treatment

- Treatment is based on the severity of symptoms.
 Treatment generally indicated with SpCO > 12-15%.
- High-concentration O₂ should be administered to displace CO from hemoglobin.
- Be prepared to treat complications (e.g., seizures, cardiac ischemia).

CO Treatment


- Prehospital CPAP can maximally saturate hemoglobin and increase oxygen solubility.
- Strongly suggested for moderate to severe poisonings.

CO Treatment

- Efficacy of hyperbaric oxygen therapy (HBO) is a matter of conjecture although still commonly practiced.
- Generally reserved for severe poisonings.
- May aid in alleviating tissue hypoxia.

CO Poisoning Considerations

 Significant and evolving body of literature now suggests that there are numerous longterm and permanent sequelae from CO poisoning.

CO Poisoning Considerations

- Fetal hemoglobin has a much greater affinity for CO than adult hemoglobin.
- Pregnant mothers may exhibit mild to moderate symptoms, yet the fetus may have devastating outcomes.

CO Poisoning

- Remember, CO poisoning is the great imitator.
- Missed CO exposure often leads to death and disability.
- CO is a particular risk for firefighters.

A simple COHb reading can save a life and prevent longterm problems.

CO-Oximetry

- CO-oximetry works the same as pulse oximetry.
- Button brings up SpCO and SpMET (if available) in upper and lower windows respectively.

CO and Cyanide

Parts of cyanide antido sodium nitrite) induce South in the matter induce
 Cyanide antidotes and to elevated COHb and reducing O₂ capacity o
 Sodium nitrite should I combination cyanide/C SpCO >10%.

Hydroxocobalamin is the cyanide antidote of choice for mixed cyanide and CO poisonings.

iun is renally-

 Hydroxocobalamin cor cyanocobalamin (Vitanim e cleared. 31

Financial Disclosure

This program was prepared with an unrestricted grant from Masimo. Masimo did not control content.

Credits

- * Content: Bryan Bledsoe, DO, FACEP
- **Art: Robyn Dickson (Wolfblue Productions)**
- + The following companies allowed use of their images for this presentation: Brady/Pearson Education

 - Scripps/University of California/San Diego
 - & JEMS/Brook Wainwright
 - Bryan Bledsoe, DO, FACEP
 - Masimo, Inc.

